

When the Time is Right: The impact of weather variations on the contrast in earth resistance data

A. Schmidt, R. Fry, A. Parkyn, J. Bonsall and C. Gaffney

Overview

Earth Resistance and Soil Moisture
Conductivity Contrast
Correlation with Rain
Prediction of Contrast
Conclusions

Earth Resistance and Soil Moisture

and the second

Best time for earth resistance survey?

Measurements = soil electrical conductivity

■ Electrical conductivity ↔ soil moisture: well researched, known for various soils

■ Soil moisture ↔ weather, environmental variables: difficult – too many parameters

Conductivity Contrast

Usual definition of contrast:

$$c = \frac{\sigma - \sigma_o}{\sigma_o}$$
higher conductivity
lower conductivity

 $(\sigma > \sigma_o)$: *c* between 0 and $+\infty$ $(\sigma < \sigma_o)$: *c* between -1 and 0 Ω₀

σ

Symmetric contrast:

$$c = \frac{\sigma - \sigma_o}{\sigma + \sigma_o}$$

higher conductivity
$$(\sigma > \sigma_o): c \text{ between 0 and } + 1$$
lower conductivity
$$(\sigma < \sigma_o): c \text{ between -1 and 0}$$

Resistivity contrast is the negative of this symmetric conductivity contrast

Correlation with Rain

Net amount of moisture in soil:
 precipitation that enters the soil
 evapotranspiration

 through crops
 through bare soil

 downward drainage (percolation)

Correlation with Rain

Simplified model:
 only based on *change* evapotranspiration and downward drainage assumed to have approximately constant rate

Prediction of Contrast

 Experience: best earth resistance contrast after dry period that follows considerable rain
 larger pores in ditch retain more total moisture

bottom fill traps moisture

Prediction of Contrast

Numerical: 'precipitation ratio' $p(d) = \frac{\text{average daily rainfall last } d \text{ days}}{\text{average daily rainfall last } 30 \text{ days}}$

always the same: p=1

was dry, now wet: p>1

was wet, now dry: p<1</pre>

Caistor Roman Fort - src

Caistor Roman fort, main ditch

◆ 1995/6: monthly earth resistance measurements ditch *vs.* reference soil \rightarrow resistivity contrast

 \bullet weather data \rightarrow precipitation ratio

Peter Cott & Arnold Aspinall

How to chose number of days *d* for averaging? correlation test: contrast vs. *p(d)* for all survey events

How to chose number of days *d* for averaging?
 correlation test: contrast vs. *p(d)* for all survey events
 plot correlation coefficient for different *d*

Chose best d

- How to chose number of days *d* for averaging?
 correlation test: contrast vs. *p(d)* for all survey events
 plot correlation coefficient for different *d* chose best *d*

University of Bradford 'amphitheatre'

•'best' d is not always the biggest

- Harnhill Cherry Copse
 - correlation negative

- Iow resistivity ditch if last few days were very wet
- extremely well drained, Harnhill Cherry Copse - correlation for prior days ditch and Twin 0.25m Twin 0.50m surrounding matrix Twin 0.75m 0.2 Twin 1.00m survey events 0.0 -0.02 corr. coef. -0.04 es. contrast -0.2 -0.06 -0.08 -0.4-0.1 -0.6 L -0.12 25 5 10 15 20 30 0.8 0.9 1.1 1.2 1.3 1 1.4 prior days p(22)

Conclusion

calculate precipitation ratio for prior 15 days
 from rain data
 then predict earth resistance contrast for ditches

approximation, not for all sites

simple method

needs easy tool

