ARCHAEOLOGY, MAGNETIC METHODS
Encyclopedia of Geomagnetism and Paleomagnetism
David Gubbins and Emilio Herrero-Bervera (eds)
Springer, New York

by Armin Schmidt

Magnetism and Archaeology

Introduction

Magnetic methods have become important tools for the scientific investigation of archaeological sites, with magnetic prospection surveys and archaeomagnetic dating being the most prominent ones. The principles behind these techniques were initially applied to larger and older features, for example prospecting for ore deposits (see Magnetic anomalies for geology and resources) or paleomagnetic dating (see Paleomagnetism). When these techniques were adapted for archaeological targets it was soon established that very different methodologies were required. Archaeological features are relatively small and buried at shallow depth, and the required dating accuracy is in the order of tens of years. More importantly, the relationship between archaeological features and magnetism is often difficult to predict and the planning of investigations can hence be complicated. Related is the problem of interpretation. Geophysical results on their own are only of limited use to resolve an archaeological problem. It is the archaeological interpretation of the results, using all possible background information (site conditions, archaeological background knowledge, results from other investigations etc.), which provides useful new insights. If the relationship between magnetic properties and their archaeological formation is unknown, such interpretation may become speculative.

All magnetic investigations depend on the contrast in a magnetic property between the feature of interest and its surrounding environment, for example the enclosing soil matrix. The most important magnetic properties for archaeological studies are magnetisation and magnetic susceptibility.

Remanent magnetism

Thermoremanent magnetisation is probably the best understood magnetic effect caused by past human habitation. If materials that are rich in iron-oxides are heated above their Curie temperature and then allowed to cool in the ambient earth’s magnetic field they have the potential to acquire a considerable thermoremanence (see Thermoremanence) that is fixed in the material until further heating. Typical archaeological examples are kilns and furnaces, often built of clay, which during their heating cycles often exceed the Curie temperatures of magnetite (Fe₃O₄) and maghaemite (γ-Fe₂O₃) (578 °C and 578-675 °C, respectively). Such iron-oxides are commonly found in the clay deposits that were used for the construction of these features. Even if the clays only contained weakly magnetic haematite or goethite, the heating and cooling cycles may have converted these into ferri-magnetic iron-oxides (see Changes in magnetic mineralogy due to heating and...
methodological implications). Similarly, fired bricks and pottery can exhibit thermoremanence but when the finished bricks are used as building material their individual vectors of magnetisation will point into many different directions producing an overall weakened magnetic signature (Bevan 1994). The same applies to heaps of pottery shards. The strong magnetic remanence of kilns led to their discovery with magnetometers in 1958 (Clark 1996), which triggered the widespread use of archaeological magnetometer surveys today. Kilns also helped to establish the archaeomagnetic dating technique as a new tool for chronological studies in archaeology (Clark et al. 1988).

Detrital remanence is caused when the earth’s magnetic field aligns magnetised particles that are suspended in solution and gradually settle (see Detrital remanent magnetism). An example is stagnant water loaded with ‘magnetic sediments’. The resulting deposits can exhibit a weak but noticeable remanence, which could be used for dating and prospection. It is suspected that similar effects have produced a small remanence and hence a noticeable positive signal in Egyptian mud-bricks, which were made from wet clay pushed into moulds and dried in the sun (Herbich 2003). However, other magnetometer surveys over mud-brick structures (Becker & Fassbinder 1999) have shown a negative magnetic contrast of these features against the surrounding soil. Although it is possible to consider burning events that could lead to such results during the buildings’ demolition, it is more likely that these bricks were made from clay that has lower magnetic susceptibility than the soil on the building site.

Induced magnetism

Any material with a magnetic susceptibility will acquire an induced magnetisation in the earth’s magnetic field (see Magnetic susceptibility). Hence, if past human habitation has led to enhanced levels of magnetic susceptibility in the soils, magnetic measurements can be used for their detection. The relationship between human activities and the enhancement of magnetic susceptibility was investigated by Le Borgne (1955; 1960), distinguishing thermal and bacterial enhancement. When soil is heated in the presence of organic material (for example during bush- or camp-fires) oxygen is excluded and the resulting reducing conditions lead to a conversion of the soil’s haematite (α-Fe$_2$O$_3$, anti-ferromagnetic) to magnetite (Fe$_3$O$_4$, ferri-magnetic) with a strong increase of magnetic susceptibility. On cooling in air some of the magnetite may be re-oxidised to maghaemite (γ-Fe$_2$O$_3$, ferri-magnetic), thereby preserving the elevated magnetic susceptibility. In contrast, the ‘fermentation effect’ refers to the reduction of haematite to magnetite in the presence of anaerobic bacteria that grew in decomposing organic material left by human habitation, either in the form of rubbish pits (‘middens’) or wooden building material. This latter effect requires further research but it is reported that changes in pH/Eh conditions as well as the bacteria’s use of iron as electron source are responsible for the increase of magnetic susceptibility (Linford 2004). The level of magnetic susceptibility that can be reached through anthropogenic enhancement also depends on the amount of iron-oxides initially available in the soil for conversion. The level of enhancement can hence be quantified by relating a soil’s current magnetic susceptibility to the maximum achievable value. This ratio is referred to as ‘fractional conversion’ and is determined by heating a sample to about 700°C to enhance its magnetic susceptibility as far as possible (Graham & Scollar 1976; Crowther & Barker 1995). Whether the initial magnetic susceptibility was enhanced by pedogenic or anthropogenic effects can however not be distinguished with this method. It is also worth remembering that magnetite and maghaemite have the highest magnetic susceptibility of the iron-oxides commonly found in soils and in the absence of elemental iron a sample’s magnetic susceptibility is hence a measure for the concentration of these two minerals.

More recent investigations have indicated additional avenues for the enhancement of magnetic susceptibility. One of the most interesting is a magnetotactic bacterium that thrives in organic material and grows magnetite crystals within its bodies (Fassbinder et al. 1990) (see also Biomagnetism). Their accumulation in the decayed remains of wooden postholes led to measurable magnetic anomalies and is probably responsible for the detection of palisade walls in magnetometer surveys (Fassbinder & Irlinger 1994). Other causes include the low-temperature thermal
dehydration of lepidocrocite to maghaemite (e.g. Özdemir & Banerjee 1984) and the physical alteration of the constituent magnetic minerals, especially their grain size (Linford & Canti 2001; Weston 2004). Magnetic susceptibility can also be enhanced by the creation of iron-sulphides in perimarine environments with stagnant waters (Kattenberg & Aalbersberg 2004). These may fill geomorphological features, like creeks, that were used for settlements and can therefore be indirect evidence for potential human activity.

Archaeological Prospection

Archaeological prospection refers to the non-invasive investigation of archaeological sites and landscapes for the discovery of buried archaeological features. To understand past societies it is of great importance to analyse the way people lived and interacted and the layout of archaeological sites gives vital clues; for example the structure of a Roman villa’s foundations or the location of an Iron-aged ditched enclosure within the wider landscape. Such information can often be revealed without excavation by magnetic surveys. These techniques have therefore become a vital part of site investigation strategies. Buried archaeological features with magnetic contrast will produce small anomalies in measurements on the surface and detailed interpretation of recorded data can often lead to meaningful archaeological interpretations. The techniques are not normally used to ‘treasure-hunt’ for individual ferrous objects but rather for features like foundations, ditches, pits or kilns (Sutherland & Schmidt 2003).

Magnetic Susceptibility Surveys

Since human habitation can lead to increased magnetic susceptibility (see above), measurements of this soil property are used for the identification of areas of activity. Such surveys can either be carried out in situ (i.e. with non-intrusive field measurements) or by collecting soil samples for measurements in a laboratory. These two methods are often distinguished as being volume- and mass specific, respectively, although such labelling only vaguely reflects the measured properties.

Most instruments available for the measurement of low field magnetic susceptibility internally measure the ‘total magnetic susceptibility’ (k_t with units of m3), which is proportional to the amount of magnetic material within the sensitive volume of the detector: the more material there is, the higher will be the reading. For field measurements, the amount of investigated material is usually estimated by identifying a ‘volume of sensitivity’ (V) for the employed sensor (e.g. a hemisphere with the sensor’s diameter for the Bartington MS2D field coil). The ‘volume specific magnetic susceptibility’ is then defined as $\kappa = k_t / V$ (dimensionless). In contrast, laboratory measurements normally relate instrument readings to the weight of a sample (m), which can be determined more accurately. The ‘mass specific magnetic susceptibility’ is then $\chi = k_t / m$ (with units of m3 kg$^{-1}$). Accordingly, it is possible to calculate one of these quantities from the other using the material’s bulk density (ρ): $\chi = \kappa / \rho$.

The main difference between field and laboratory measurements, however, is the treatment of samples. It is common practice (Linford 1994) to dry and sieve soil samples prior to measuring their magnetic susceptibility in the laboratory. Drying eliminates the dependency of mass specific magnetic susceptibility on moisture content, which affects the bulk density. Sieving removes coarse inclusions (e.g. pebbles) that are magnetically insignificant. In this way, laboratory measurements represent the magnetic susceptibility of a sample’s soil component and can therefore be compared to standard tables. For field measurements, however, results can be influenced by non-soil inclusions and the conversion of volume specific measurements to mass specific values is affected by changes in environmental factors (e.g. soil moisture content).

The measured magnetic susceptibility depends on the amount of iron oxides available prior to its alteration by humans (mostly related to a soil’s parent geology), and also on the extent of conversion due to the anthropogenic influences. As a consequence, the absolute value of magnetic susceptibility can vary widely between different sites and ‘enhancement’ can only be identified as a
contrast between areas of higher susceptibility compared to background measurements. There is no predetermined threshold for this contrast and it is therefore justifiable to use the more qualitative measurements of field based magnetic volume susceptibility (see above) for archaeological prospection.

The instrument most commonly used for field measurements of volume specific magnetic susceptibility is the Bartington MS2D field coil consisting of a 0.2m diameter ‘loop’, which derives 95% of its signal from the top 0.1 m of soil (Schmidt et al. 2005). Since most archaeological features are buried deeper than this sensitivity range, the method relies on the mixing of soil throughout the profile, mostly by ploughing.

Magnetic susceptibility surveys, either performed as in situ field measurements or as laboratory measurements of soil samples, can be used in three different ways: (i) as primary prospection method to obtain information about individual buried features, (ii) to complement magnetometer surveys and help with their interpretation by providing data on underlying magnetic susceptibility variations, or (iii) for a quick and coarse ‘reconnaissance’ survey using large sampling intervals to indicate areas of enhancement instead of outlining individual features. Figure 1a shows the magnetic susceptibility survey (MS2D) of a medieval charcoal burning area. Since a detailed study of this feature was required the data were recorded with a spatial resolution of 1m in both x- and y-direction. Corresponding magnetometer data (FM36) are displayed in Figure 1b. The magnetic susceptibility results outline the burnt area more clearly and are on this site well suited for the delineation of features. On former settlement sites where ploughing has brought magnetically enhanced material to the surface and spread it across the area, magnetic susceptibility measurements at coarse intervals of 5 m, 10 m or 20 m can be used to identify areas of enhancement, that can later be investigated with more detailed sampling, for example with a magnetometer (see below). Even where ploughing has mixed the soil, magnetic susceptibility measurements can vary considerably over short distances of about 2 m. It is hence not normally possible to interpolate coarsely sampled data and settlement sites can only be identified if several adjacent measurements have consistently high levels compared to the surrounding area. Figure 2 shows data from a survey at Kirkby Overblow, North Yorkshire, in search for a lost medieval village. The dots mark the individual measurements and their size represents the strength of the magnetic susceptibility, highlighting the singularity of each measurement. Nevertheless, areas of overall enhancement can be identified and these were later investigated with magnetometer surveys. The grey shading in this diagram visualises the data in a contiguous way, colouring the Voronoi cell around each individual measurement according to its magnetic susceptibility. The limitations of such diagrams for widely separated measurements should be considered carefully.

Magnetometer Surveys

In contrast to surveys that measure magnetic susceptibility directly, magnetometer surveys record the magnetic fields produced by a contrast in magnetisation, whether it is induced as a result of a magnetic susceptibility contrast, or remanent, for example from thermoremanent magnetisation. If the shape and magnetic properties of a buried archaeological feature were known, the resulting magnetic anomaly could be calculated (Schmidt 2001) (see also Modelling magnetic anomalies). The inverse process, however, of reconstructing the archaeological feature from its measured anomaly, is usually not possible due to the non-uniqueness of the magnetic problem and the complex shape and heterogeneous composition of such features. Some successful inversions were achieved when archaeologically informed assumptions were made about the expected feature shapes (e.g. the steepness of ditches) and magnetic soil properties (for example from similar sites) (Neubauer & Eder-Hinterleitner 1997; Herwanger et al. 2000). If surveys are conducted with sufficiently high spatial resolution, the mapped data often already provide very clear outlines of the buried features (Figure 3), allowing their archaeological interpretation even without data inversion. However, when interpreting measured data directly, the typical characteristics of magnetic anomalies have to be taken into consideration. For example, in the northern hemisphere anomalies
created by soil features with induced magnetisation have a negative trough to the north of the archaeological structure and a slight shift of the positive magnetic peak to the south of its centre (Figure 4).

To estimate the strength of a typical archaeological response it is possible to approximate the anomaly with a simplified dipole field:

\[B = \mu_0 \frac{m}{r^3} = \Delta \kappa \frac{V B_{\text{earth}}}{r^3}, \]

where \(\mu_0 \) is the magnetic permeability of free space \((4\pi \times 10^{-7} \, \text{Tm} \, \text{A}^{-1})\), \(m \) is the total magnetic moment of the feature, \(r \) the distance between measurement position and sample, \(\Delta \kappa \) its volume specific magnetic susceptibility contrast, \(V \) its volume and \(B_{\text{earth}} \) the earth’s magnetic flux density. For a buried pit, the following values can be used: \(\Delta \kappa = 10 \times 10^{-5}, \ V = 1 \, \text{m}^3, \ B_{\text{earth}} = 48,000 \, \text{nT} \) and \(r = 1 \, \text{m} \). This yields an anomaly strength of only 4.8 nT, which is typical for archaeological soil features (e.g. pits or ditches). Anomalies created by the magnetic enrichment of soils through magnetotactic bacteria, for example in palisade ditches, can be as low as 0.3 nT (Fassbinder & Irlinger 1994) and are therefore only detectable with very sensitive instruments and on sites where the signals caused by small variations in the undisturbed soil’s magnetic properties are very low (low ‘soil noise’). Peak values higher than approximately 50 nT are normally only measured over ferrous features with very high magnetic susceptibility, or over features with thermoremanent magnetisation, like furnaces or kilns.

As shown by the numerical approximation above, the anomaly strength depends both on the magnetisation and the depth of a buried feature, and can therefore not be used for the unambiguous characterisation of that feature. More indicative is the spatial variation of an anomaly (see Figure 4), since deeper features tend to create broader anomalies.

Surveys are normally undertaken with magnetometers on a regular grid. The required spatial resolution obviously depends on the size of the investigated features, but since these are often unknown at the outset, a high resolution is advisable. Recommendations by English Heritage have suggested a minimum resolution of 0.25 m along lines with a traverse spacing of 1 m or less (0.25 m \(\times \) 1 m) (David 1995). However, to improve the definition of small magnetic anomalies even denser sampling is required. Such high-definition data can even show peaks and troughs of bipolar anomalies from small, shallowly buried iron debris (e.g. farm implements) and therefore help to distinguish these from archaeological features with wider anomaly footprints. More recently, it has become possible to collect randomly sampled data with high accuracy (Schmidt 2003) that can either be gridded to a predefined resolution or visualised directly with Delaunay triangulation (Sauerländer et al. 1999).

Due to the often small anomaly strength caused by archaeological features, very sensitive magnetometers are required for the surveys. The first investigations (Aitken et al. 1958) were made with proton-free precession magnetometers (see also Observatory Instrumentation) but due to the slow speed of operation and their relative insensitivity, these are rarely used for modern surveys. In Britain, the most commonly used magnetometers use fluxgate sensors (see also Observatory Instrumentation), which can achieve noise levels as low as 0.3 nT if sensors and electronics are carefully adjusted. In Austria and Germany some groups use Caesium vapour sensors that are built to the highest possible specifications and have reported sensitivities of 0.001 nT (Becker 1995). On loess soils, which produce very low magnetic background variations, the weak anomalies caused by magnetotactic bacteria in wood (see above) were detected with Caesium magnetometers, revealing palisade trenches of Neolithic enclosures (Neubauer & Eder-Hinterleitner 1997).

Magnetometer sensors measure the combination of the archaeological anomaly and the earth’s magnetic field. Hence, to reveal the archaeological anomalies, readings have to be corrected carefully for changes in the ambient field, caused by diurnal variations (see Geomagnetic Secular Variation) or magnetic storms (see Storms and substorms). Proton free-precession instruments are often used in a differential arrangement (‘variometer’) by placing a reference sensor in a fixed location to monitor the earth’s magnetic field. The survey is then carried out with an additional sensor, which is affected by the same ambient field. Subtracting the data from both sensors cancels out the earth’s field. The same can be achieved with a gradiometer arrangement where the second
sensor is usually rigidly mounted 0.5m to 1m above the first so that both are carried together. Their measurements can be subtracted instantly to form the gradiometer reading. Despite the heavier weight of such an arrangement it allows for improved instrument design. Especially for fluxgate sensors a signal feedback system, linked to the upper sensor, can be used to enhance the sensitivity of the instrument. Archaeological features that can be detected with magnetometers are often buried at shallow depth and a gradiometer’s sensor separation is then similar to the distance between the feature and the instrument. Therefore, the gradiometer reading is not an approximation for the field gradient and is better recorded as the difference in magnetic flux density (nT) between the sensors, and not as a gradient (nT m⁻¹). The magnetic field created by the feature of interest and the ambient magnetic field combine at the sensor and the recorded signal depends on the vector component measured with the particular instrument. For example, fluxgate sensors measure a single component of the magnetic field (usually the vertical component) and a gradiometer therefore records exactly this component of the archaeological anomaly. In contrast, gradiometers built from field intensity sensors, like proton free-precession and caesium vapour sensors, measure the component of the anomaly in the direction of the ambient earth’s magnetic field, since this is much larger than the anomaly. Its direction governs the vector addition of the two contributions and the gradiometer reading can be approximated as

$$B_{\text{earth}} + B_{\text{anomaly}} - B_{\text{earth}} = B_{\text{anomaly}}e_{\text{earth}}$$

where e_{earth} is the unit-vector in the direction of the earth’s magnetic field (Blakely 1996). As a consequence, vertical fluxgate sensors record weaker signals in areas of low magnetic latitude (i.e. near the equator) and data from the two sensor types cannot be compared directly.

The ‘detection range’ of archaeological geophysical surveys depends on the magnetisation and depth of the features (see above) as well as the sensitivity of the used magnetometers and can therefore not easily be specified. Based on practical experience with common instruments, it is estimated that typical soil features, like pits or ditches, can be detected at depths of up to 1-2 m, while ferrous and thermoremanent features can be identified even deeper. Weak responses were recorded from paleochannels that are buried by more than 3 m of alluvium (Kattenberg & Aalbersberg 2004).

Prior to their final interpretation, magnetometer data often have to be treated with computer software for the improvement of survey deficiencies and the processing of resulting data maps (Schmidt 2002). Data improvement can reduce some of the errors introduced during the course of a survey, such as stripes and shearing between adjacent survey lines. To reduce the time of an investigation, adjacent lines of a magnetometer survey are often recorded walking up and down a field (‘zig-zag’ recording). However, since most magnetometers have at least a small heading error, a change in sensor alignment resulting from this data acquisition method can lead to slightly different offsets for adjacent lines, which are then visible as stripes in the resulting data (Figure 5a, middle). A common remedy for this effect is the subtraction of the individual mean or median value from each survey line. This helps to balance the overall appearance but also removes anomalies running parallel to the survey lines. If the sensor positions for the forward and backward survey direction are systematically offset from the desired recording position (e.g. always 0.1 m ‘ahead’) anomalies will be sheared and data will appear ‘staggered’ (Figure 5a, left). If this defect is sufficiently consistent, it can be removed (Figure 5b) by fixed or adaptive shifting of every other data line (Ciminale & Loddo 2001). Another common problem found with some instruments is the ‘drift’ of their offset value, mostly due to temperature effects. If regular measurements are made over dedicated reference points the effects of drift can be reduced numerically. All these methods of data improvement require detailed survey information, for example about the length of each survey line, the direction of the lines, the size of data blocks between reference measurements etc. It is hence essential that metadata are comprehensively recorded (see below). Once all data have been corrected for common problems and all survey blocks balanced against each other, they can be assembled into a larger unit (often referred to as ‘composite’) and processed further. Typical processing steps may include low- and high-pass filtering and reduction-to-the-pole. However, most
processing can introduce new artefacts into the data (Schmidt 2003) and should therefore only be used if the results help with the archaeological interpretation.

Many archaeological magnetometer surveys are commissioned to resolve a clearly defined question, for example to find archaeological remains in a field prior to its development for housing. However, most data are also of potential benefit beyond their initial intended use and should therefore be archived. For example, the removal of all archaeological remains during the development of a building site may mean that the collected geophysical data are the most important record of an ancient settlement. It is therefore essential that data archiving is undertaken according to recognised standards. In particular detailed information describing data collection procedures and the layout of site and survey is important. Such information is usually referred to as ‘metadata’ (Schmidt 2002) and complements the numerical instrument readings as well as processed results. Related to the archiving of data from geophysical surveys is the recommendation that at least a brief report should be provided and archived, whenever possible.

Archaeomagnetic Dating

As with paleomagnetic dating (see Paleomagnetism), the magnetic remanence preserved in archaeological structures can be used for their dating. Although some research has been undertaken on depositional (‘detrital’) remanence in sediments (Batt & Noel 1991), archaeomagnetic dating is mainly applied to thermoremanent magnetisation. By firing archaeological structures that are rich in iron-oxides above their Curie temperature (ca 650-700°C) they become easily magnetised in the direction of the ambient field, which is usually the earth’s magnetic field. On subsequent cooling below the blocking temperature this acquired magnetisation will form a magnetic remanence. When archaeological features that were exposed to such heating and cooling are excavated, oriented samples can be recovered and their thermoremanent magnetisation measured. By comparing these data with an archaeomagnetic calibration curve that charts the variation of magnetic parameters with time, a date can be determined for the last firing of the archaeological feature.

Most archaeomagnetic dating methods use two or three components of the remanent magnetisation vector (inclination, declination and sometimes intensity). It is therefore a pre-requisite that samples are collected from structures that have not changed their orientation since the last firing. Typical features include kilns, hearths, baked floors and furnaces. Unfortunately, it is not always possible to assess whether an archaeological feature is found undisturbed and in situ. For example, due to instabilities following the abandonment of a kiln, the walls may have moved slightly or the area around a fire place may have been disturbed by modern agricultural activities. Only the final statistical analysis (see below) can ascertain the validity of results. In recent years advances in archaeointensity dating have been made, using only the magnitude of the magnetisation for age determinations (see Microwave and Shaw techniques). It is therefore possible to magnetically date materials that are no longer in their original position, like fired bricks that were used in buildings or even non-oriented pottery fragments (Shaw et al. 1999; Sternberg 2001).

A variety of different sampling methods exist, which all have their respective benefits. Some groups extract samples with corers, others encase the selected samples in Plaster of Paris before lifting them together with the plaster block, and in Britain plastic disks are commonly glued to the samples before extraction. As it is important to accurately record the orientation of the sample while still in situ, plaster and disks are usually levelled horizontally and the north direction is marked with a compass (either conventional, digital or sun-based). Determining the right sampling locations within a feature is important as the effect of magnetic refraction often causes magnetic field lines to follow the shape of heated features, similar to the demagnetisation effects observed in grains and elongated objects. Soffel (1991) reports an approximately sinusoidal dependence of both inclination and declination from the azimuthal angle in a hollow cylindrical feature while Abrahamsen et al. (2003) have found that sample declinations from a hemisphere of solid iron slag with 0.5 m diameter vary throughout 360°. It is therefore essential that several samples from different parts of a
feature are compared to statistically assess whether a consistent magnetisation vector can be determined.

After the last firing of an archaeological structure, magnetically soft materials may have acquired a viscous remanent magnetisation that gradually followed the changing direction of the earth’s magnetic field (see *Geomagnetic Secular Variation*). Its contribution to a sample’s overall magnetisation can lead to wrong estimates for the age, and it therefore has to be assessed with a Thellier experiment (see *Paleomagnetic field: Intensity Thellier-Thellier method*) and then removed. This removal can either be accomplished through stepwise thermal demagnetisation (see *Demagnetization*) or with stepwise alternating field (AF) demagnetisation (Hus et al. 2003). The subsequent measurement of a sample’s magnetization vector, for example in a spinner magnetometer, is then a good approximation of its thermoremanence. Fisher statistics (see *Statistical methods for paleomagnetic data*) is used to assess the distribution of all the measured magnetisation vectors of an archaeological feature by calculating a mean value for the direction together with its angular spread α_{95}. The latter describes the distribution of all measured directions around the mean, and is half of the opening angle of a cone (hence appearing as a ‘radius’ on a stereographic plot) that contains the mean vector direction with a probability of 95%. The spread of the individual vector directions can be due to errors in sample marking, measurement errors and the distribution of different directions within a single feature (see above). It has therefore become common practice to expect α_{95} to be less than 5° for a reliable investigation (Batt 1998).

Once the magnetisation of an archaeological feature has been established it can be compared to a calibration curve to derive the archaeological age. The construction and use of such calibration data has been a matter of recent research. In Britain, a calibration curve was compiled by Clark et al. (1988) using 200 direct observations (since 1576 AD) and over 100 archaeomagnetic measurements from features that were dated by other means, as far back as 1000 BC. All data were corrected for regional variations of the earth’s magnetic field and converted to apparent values for Meriden (52.43°N, 1.62°W). After plotting results on a stereographic projection, the authors manually drew a connection line that was annotated with the respective dates. Measurements from any new feature could be drawn on the same diagram and the archaeological date was determined by visual comparison. This approach is compatible with the accuracy of the initial calibration curve but has clear limitations (Batt 1997). Similar calibration curves exist for other countries and due to short-scale variations of the earth’s magnetic field’s non-dipole component (see *Non-dipole field*), they are all slightly different and have to be constructed from individually dated archaeological materials. The reference curve for Bulgaria, for example, now extends back to nearly 6000 BC (Kovacheva et al. 2004). Although the calibration curve by Clark et al. (1988) has been a useful tool for archaeomagnetic dating, improvements are now being made. Batt (1997) used a running average to derive the calibration curve more consistently from the existing British data. Kovacheva et al. (2004) calculated confidence limits for archaeological dates using Bayesian statistics (Lanos 2004) for the combination of inclination, declination and paleointensity of measured samples. To improve the accuracy and reliability of the archaeomagnetic method, more dated archaeological samples are required and comprehensive international databases are currently being compiled.

Some researchers have attempted to use magnetometer surveys over furnaces to derive archaeomagnetic dates for their last firing. For this, the magnetisation causing the recorded magnetic anomaly has to be estimated and can then be used with a calibration curve for the dating of the buried archaeological feature. To accommodate the complex shape and inhomogeneous fill of partly demolished iron furnaces in Wales, Crew (2002) had to build models with up to five dipole sources to approximate the measured magnetic anomaly maps. The dipole parameters were chosen to achieve the best possible fit between measured and modelled data and their relationship with the magnetisation of the furnaces’ individual components is not entirely clear. In addition to the sought after thermoremanence, this magnetisation also has contributions from acquired viscous remanence and from the induced magnetisation in the current earth’s magnetic field. Even after estimates for these two sources have been taken into consideration, the results were in poor agreement with the
archaeomagnetic calibration curve. The magnetic anomalies form slag-pit furnaces in Denmark were approximated with individual single dipole sources by Abrahamsen et al. (2003). They found that the distribution of 32 adjacent furnaces produced an unacceptably high α_{95} value of 18° and concluded that the method is therefore unsuitable for the dating of these features.

Conclusion

There are many ways magnetic methods can be used in archaeological research and this application has made them popular with the public. Magnetometer surveys have become a tool for archaeologists, nearly as important as a trowel. In an excavation, many archaeological remains are only revealed by their contrast in colour or texture compared with the surrounding soil. Searching for a contrast in magnetic properties is therefore only an extension of a familiar archaeological concept. The science explaining the magnetic properties of buried features may be complex but the application of the techniques has become user-friendly. Similarly, archaeomagnetic dating is an important part of an integrated archaeological dating strategy. For archaeological sites, dates are often derived with many different methods simultaneously, ranging from conventional archaeological typological determinations over radiocarbon dating to luminescence methods. Combining these different data, for example with Bayesian statistics, allows a significant reduction of each method’s errors and leads to improved results. The wealth of information stored in the magnetic record has certainly made an important contribution to modern archaeology.

Bibliography

Armin Schmidt

Crossreferences

Biomagnetism
Changes in magnetic mineralogy due to heating and methodological implications
Detrital remanent magnetism
Geomagnetic Secular Variation
Magnetic anomalies for geology and resources
Magnetic susceptibility
Microwave and Shaw techniques
Modelling magnetic anomalies
Non-dipole field
Observatory Instrumentation
Paleomagnetic field: Intensity Thellier-Thellier method
Paleomagnetism
Statistical methods for paleomagnetic data
Storms and substorms
Thermoremanence
Figures

Figure 1: Medieval charcoal production site in Eskdale, Cumbria. (a) Magnetic susceptibility survey with Bartington MS2D field coil. (b) Fluxgate gradiometer survey with Geoscan FM36. Both surveys were conducted over an area of 40 m × 40 m with a spatial resolution of 1 m × 1 m.
Figure 2: Kirkby Overblow, North Yorkshire. To search for a deserted medieval village, a magnetic susceptibility survey was undertaken with the Bartington MS2D field coil. The measurements are represented as scaled dots and as shaded Voronoi cells. Basemap from 1st edition Ordnance Survey data.
Figure 3: Fluxgate gradiometer data from Ramagrama, Nepal. The outlines of a small Buddhist temple complex are clearly visible, including the outer and inner walls of the courtyard building (1). In addition, the foundations of a small shrine (2) within an enclosure wall (3) can be discerned.
Figure 4: Calculated shape of the magnetic anomaly caused by the induced magnetisation of a buried cubic feature with 3m side length. The anomaly is measured with a vertical fluxgate gradiometer (0.5 m sensor separation), 0.5 m above the cube’s top surface. The strength of the anomaly was calculated for an inclination of 70° and a magnetic susceptibility contrast of 1×10^{-8}.
Figure 5: Fluxgate gradiometer data from Adel Roman Fort, West Yorkshire. (a) Field measurements with staggered data (left) and stripes (centre). (b) After their improvement the data clearly show a ditch (1) and the soldiers’ barracks (2) to the north of the road through the Fort (3).